Energy Harvesting Technologies

Copertina anteriore
Shashank Priya, Daniel J. Inman
Springer Science & Business Media, 28 nov 2008 - 524 pagine
0 Recensioni

Energy Harvesting Technologies provides a cohesive overview of the fundamentals and current developments in the field of energy harvesting. In a well-organized structure, this volume discusses basic principles for the design and fabrication of bulk and MEMS based vibration energy systems, theory and design rules required for fabrication of efficient electronics, in addition to recent findings in thermoelectric energy harvesting systems.

Combining leading research from both academia and industry onto a single platform, Energy Harvesting Technologies serves as an important reference for researchers and engineers involved with power sources, sensor networks and smart materials.

 

Cosa dicono le persone - Scrivi una recensione

Nessuna recensione trovata nei soliti posti.

Indice

941 RF Power
280
95 Power Conversion 96 Energy Storage
281
971 Sensors in a Cave 972 Sensors in an Industrial Plant
282
973 Sensors in Nature
283
References
284
Harvesting Microelectronic Circuits Gabriel A RinconMora
287
101 Harvesting Sources 1011 Energy and Power
288
1012 Energy Sources
289

15 Mesomacroscale Energy Harvesters 151 Mechanical Energy Harvester Using Laser Micromachining
16
152 Mechanical Energy Harvester Using Piezoelectric Fibers
20
161 Piezoelectric Microcantilevers
21
17 Energy Harvesting Circuits
24
181 Multimodal Energy Harvesting
26
182 Magnetoelectric Composites
29
183 SelfTuning
31
184 Frequency Pumping
32
19 Selected Applications 191 Border Security Sensors
33
110 Summary
35
References
36
Electromechanical Modeling of Cantilevered Piezoelectric Energy Harvesters for Persistent Base Motions Alper Erturk and Daniel J Inman 21 Introd...
40
22 AmplitudeWise Correction of the Lumped Parameter Model
44
221 Uncoupled Lumped Parameter Base Excitation Model
45
222 Uncoupled Distributed Parameter Base Excitation Model
46
223 Correction Factors for the Lumped Parameter Model
50
224 Correction Factor in the Piezoelectrically Coupled Lumped Parameter Equations
55
231 Modeling Assumptions
57
232 Mathematical Background
58
233 Unimorph Configuration
61
234 Bimorph Configurations
64
235 SingleMode Electromechanical Equations
67
236 Experimental Validation
69
References
76
Performance Evaluation of VibrationBased Piezoelectric Energy Scavengers YiChung Shu 31 Introduction
79
311 Piezoelectric Bulk Power Generators
81
312 Piezoelectric Micro Power Generators
82
313 Conversion Efficiency and Electrically Induced Damping
83
314 Power Storage Circuits
84
322 SSHIHarvesting Circuit
89
331 Standard Interface
92
332 SSHI Interface
96
References
100
Piezoelectric Equivalent Circuit Models Bjorn Richter Jens Twiefel and Jorg Wallaschek 41 Model Based Design
106
42 Linear Constitutive Equations for Piezoelectric Material
108
43 Piezoelectric Equivalent Circuit Models for Systems with Fixed Mechanical Boundary
109
431 QuasiStatic Regime
110
432 Single Degree of Freedom Model for Dynamic Regime
111
433 MultiDegree of Freedom Model for Dynamic Regime
113
434 Experimental Parameter Identification
114
435 Case Study
116
44 Analytical Determination of the Parameters of the Equivalent Circuit Models
117
441 General Procedure for Analytical Bimorph Model
118
442 Determination of the Parameters of the Piezoelectric Equivalent Circuit Models using the Analytical Model
119
45 Equivalent Circuit Model for Base Excited Piezoelectric Systems
120
46 Overall PEG System Analyses Using Piezoelectric Equivalent Circuit Models
121
462 Analysis of the Maximum Power Output
122
463 Experimental Validation of the Piezoelectric Equivalent Circuit Model for Base Excitation
124
464 Effect of Geometry
125
465 Modeling of the Coupling Between the PEG and Its Excitation Source Additional Degrees of Freedom
126
47 Summary
127
References
128
Electromagnetic Energy Harvesting Stephen P Beeby and Terence ODonnell 51 Introduction
129
52 Basic Principles
130
53 WireWound Coil Properties
132
54 MicroFabricated Coils
134
55 Magnetic Materials
136
56 Scaling of Electromagnetic Vibration Generators
139
57 Scaling of Electromagnetic Damping
142
58 Maximising Power from an EM Generator
145
510 Microscale Implementations
146
511 MacroScale Implementations
151
512 Commercial Devices
154
513 Conclusions
158
References
159
On the Optimal Energy Harvesting from a Vibration Source Using a Piezoelectric Stack Jamil M Renno Mohammed F Daqaq and Daniel J Inman
163
61 Introduction
166
62 Onedimensional Electromechanical Analytic Model
168
63 Power Optimization
172
64 Optimality of the ParallelfL Circuit
173
641 The Purely Resistive Circuit
175
642 The ParallelRL Circuit
183
65 The SeriesRL Circuit
188
651 Optimality Results for Series RLCircuit
189
References
192
Energy Harvesting Wireless Sensors SW Arms CP Townsend DL Churchill MJ Hamel M Augustin D Yeary and N Phan 71 Introduction
195
73 Tracking Helicopter Component Loads with Energy Harvesting Wireless Sensors
196
74 Monitoring Large Bridge Spans with SolarPowered Wireless Sensors
204
References
207
Energy Harvesting using Nonlinear Techniques Daniel Guyomar Claude Richard Adrien Badel Elie Lefeuvre and Mickael Lallart
209
81 Introduction
210
821 Principles
211
83 Energy Harvesting Using Nonlinear Techniques in SteadyState Case
221
831 Principles
222
832 Analysis Without Induction of Vibration Damping
223
833 Damping Effect
227
834 Experimental Validation
232
84 Energy Harvesting in Pulsed Operation
236
841 SSHI Technique
237
842 Performance Comparison
243
843 Experimental Validation
244
851 Series SSHI Technique
247
852 Theoretical Development with Damping Effect
251
853 Synchronous Electric Charge Extraction SECE Technique
254
854 Experimental Validation
258
86 Energy Harvesting Techniques under Broadband Excitation
262
862 Random Vibrations
263
87 Conclusion
265
Power Sources for Wireless Sensor Networks Dan Steingart 91 Introduction
267
92 Primary Batteries
271
931 Energy Harvesting versus Energy Scavenging
273
932 Photonic Methods
274
933 Vibrational Methods
276
934 Thermal Methods
279
1021 Microsystem
293
1022 Linear DCDC Converters
295
1023 Switching DCDC Converters
296
1024 Switching ACDC Converters
303
1025 Comparison
304
103 Power Losses
305
1031 Conduction Losses
306
1032 Switching Losses
310
1033 Quiescent Losses
312
1034 Losses Across Load
313
Electrostatic Harvester
314
1042 Trickle Charging Scheme
315
1043 Harvesting Microelectronic Circuit
317
105 Summary
321
Thermoelectric Energy Harvesting G Jeffrey Snyder 111 Harvesting Heat
323
112 Thermoelectric Generators
326
114 General Considerations 115 Thermoelectric Efficiency
328
116 Matched Thermal Resistance
330
118 Matching Thermoelectrics to Heat Exchangers
332
1181 Thin Film Devices
334
1110 Summary References
335
Optimized Thermoelectrics For Energy Harvesting Applications James L Bierschenk 121 Introduction
337
122 Basic Thermoelectric Theory
338
123 Device Effective ZT
341
124 System Level Design Considerations
343
125 System Optimization for Maximum Power Output
344
126 Design Considerations for Maximizing Voltage Output
347
References
350
Thin Film Batteries for Energy Harvesting Nancy J Dudney 131 Introduction
353
132 Structure Materials and Fabrication of TFB
356
133 Performance of TFBs 1331 Energy and Power
358
1333 CycleLife and ShelfLife
360
134 Outlook and Summary
362
Materials for Highenergy Density Batteries Arumugam Manthiram 141 Introduction
365
142 Principles of LithiumIon Batteries
366
143 Cathode Materials
369
1431 Layered Oxide Cathodes
370
1432 Spinel Oxide Cathodes
374
1433 Olivine Oxide Cathodes
377
144 Anode Materials
380
145 Conclusions
381
References
382
Feasibility of an Implantable Stimulated MusclePowered Piezoelectric Generator as a Power Source for Implanted Medical Devices BE Lewandowski ...
389
152 Generator Driven by Muscle Power
390
153 Selection of MechanicaltoElectrical Conversion Method
393
154 Properties of Piezoelectric Material Relevant to the Generator System
395
155 Predicted Output Power of Generator
398
156 Steps Towards Reduction to Practice
400
157 Conclusion
401
References
402
Piezoelectric Energy Harvesting for BioMEMS Applications William W Clark and Changki Mo 161 Introduction
405
162 General Expression for Harvesting Energy with Piezoelectric Device
407
163 Unimorph Diaphragm in Bending
410
1631 Simply Supported Unimorph Diaphragm that Is Partially Covered with Piezoelectric Material
416
1632 Clamped Unimorph Diaphragm that is Partially Covered with Piezoelectric Material
420
164 Simulation Results and Analysis
426
165 Conclusions
429
References
430
Harvesting Energy from the Straps of a Backpack Using Piezoelectric Materials Henry A Sodano 171 Introduction
431
172 Model of PowerHarvesting System
436
1721 Experimental Testing of Piezoelectric Strap
439
1722 Results and Model Validation
443
1723 Backpack Power Prediction
444
173 Energy Harvesting Using a Mechanically Amplified Piezoelectric Stack
448
1731 Model and Experimental Validation of Energy Harvesting System
450
1732 Results and Model Validation
452
1733 Backpack Power Prediction
456
174 Conclusions
457
References
458
Energy Harvesting for Active RF Sensors and ID Tags Abhiman Hande Raj Bridgelall and Dinesh Bhatia
459
181 Introduction
460
182 RFID Tags
461
1821 Passive RFID
462
1823 Active RFID
463
183 RFID Operation and Power Transfer
466
184 Battery Life
467
185 Operational Characteristics of RF Sensors and ID Tags
468
186 Why EH Is Important?
470
187 EH Technologies and Related Work
471
1881 Energy Storage Technologies
473
1882 Energy Requirements and Power Management Issues
474
1883 Vibrational Energy Harvesting
475
1884 Solar Energy Harvesting
479
1891 ACDC Rectifier
483
1892 DCDC SwitchMode Converters
484
1810 Future Directions and Scope
487
1811 Conclusions
488
Powering Wireless SHM Sensor Nodes through Energy Harvesting Gyuhae Park Kevin M Farinholt Charles R Farrar Tajana Rosing and Michael D T...
493
192 Sensing System Design for SHM
494
193 Current SHM Sensor Modalities
495
194 Energy Optimization Strategies Associated with Sensing Systems
496
1941 Dynamic Voltage Scaling
497
1942 Dynamic Power Management
498
195 Applications of Energy Harvesting to SHM
500
196 Future Research Needs and Challenges
503
197 Conclusion
505
First Draft of Standard on Vibration Energy Harvesting
507
A1 Potential Vibration Sources for Energy Harvesting
508
A3 Theoretical Models Used to Describe the Vibration Energy Harvesting A31 WilliamsYates Model
509
A32 ErturkInman Model
510
A4 Characterization of Vibration Energy Harvester
511
References
512
Index
515
Copyright

Altre edizioni - Visualizza tutto

Parole e frasi comuni

Informazioni bibliografiche