Immagini della pagina
PDF
ePub

sary to control these more numerous muscular fibrils. The animal now moves with one end foremost, and that end first comes in contact with food, hindrances, or injurious surroundings. Here the sensory cells of feeling and their nerve fibrils multiply. Remember that these neuro-epithelial sensory cells are suited to respond not merely to pressure, but to a variety of the stimuli, chemical, molecular, and of vibration, which excite our organs of smell, taste, and hearing. Such organs and the directive eyes appear mainly at this anterior end. But a ganglion cell sends an impulse to a muscle because it has received one along a sensory nerve from one or more of these sensory cells. the ganglion cells will increase in number. The old cobweb-like plexus condenses into a little knot, the supra-oesophageal ganglion. This ganglion cannot do much, if any, thinking; it is rather a steering organ to control the muscles and guide the animal. It is the servant of the locomotive system. Yet it is the beginning of the brain of higher animals, and probably still persists as an infinitesimal portion of our human brain. And all this is the prophecy of a head soon to be developed. An excretory system has appeared to carry off the waste of the muscles and nerves.

Hence

In the schematic worm and annelid the reproductive system is simpler, though perhaps equally effective. It takes the excess of nutriment of the body. The muscular system has taken the form of a sack composed of longitudinal and transverse fibres. The perivisceral cavity, formed perhaps by cutting off and enlarging the lateral pouches of the turbellarian digestive system, serves as a very simple but serviceable circulatory system. But in the annelid and all higher forms a

special system of tubes has developed to carry the nutriment, and usually oxygen also, needed to keep up the combustion required to furnish the energy in these active organs. The digestive system has attained its definite form with the appearance of an anal opening and the accompanying division of labor and differentiation into fore-, mid-, and hind-intestine.

The digestive and reproductive systems have thus nearly attained their final form. From the higher worms upward the digestive system will improve greatly. Its lining will fold and flex and vastly increase the digestive and absorptive surfaces. The layer of cells which now secrete the digestive fluids will in part be replaced by massive glands. Far better means of grasping food than the horny teeth of annelids will yet appear. But all these changes are inconsiderable compared with the vast advance made by the muscular and nervous systems. Reproduction and digestion are losing their supremacy in the animal body. Their advance and improvement will require but little further

attention.

In all

In the annelid especially, and to some extent in the schematic worm, the supra-cesophageal ganglion is relieved in part of the direct control of the muscular fibrils and has become an organ of perception and the seat of government of lower nervous centres. higher forms it innervates directly only the principal sense-organs of the head. And at this stage the lightperceiving directive eye has developed into a form-perit was a visual eye and had vast possibilities. The ceiving, eidoscopic organ. The eye was short of range were perhaps rude and imperfect, but animal is taking cognizance of ever more subtle ele

ments in its environment. Perhaps it is not too much to say that the eidoscopic eye first awakened the slumbering animal mind, for its reflex effect upon the supraœsophageal ganglion cannot be over-estimated. The animal will very soon begin to think.

Between the turbellarian and the annelid many aberrant lines diverged. Some of these attained a comparatively high level and then seemed to meet insuperable obstacles, while others came to an end or turned downward very early. Three of these demanded attention, those leading to mollusks, insects, and vertebrates. And it is interesting to notice that the fundamental difference between these three lines was the skeleton, or perhaps we ought to say it was the habit of life which led to the development of such a skeleton.

The mollusk took to a sluggish, creeping mode of life, under an external purely protective skeleton; the insect to a creeping mode of life, with an external but almost purely locomotive skeleton; the vertebrate kept on swimming and developed an internal locomotive skeleton. And it must already have become clear to you that the destiny of these different lines was fixed not so much directly by the skeleton itself as by its reflex effect in moulding the muscular, and ultimately the nervous, system.

The insects formed their skeleton by thickening the horny cuticle of the annelid. They transformed the annelid parapodia into legs and developed wings. They attained life in the air. They devoted the muscles of the body largely to the extremities and gained swift locomotion. They have a fair circulatory and an excellent respiratory system. Best of all, they developed a head and a brain by fusing the three anterior

ganglia of the body. The insect could and does think. Such a structure ought to lead to great and high results. But actually their possibilities were very limited. They have not progressed markedly during the last geological period. Their external skeleton was easily attained and brought speedy advantages, which for a time placed them far above all competitors. But it limited their size and length of life and opportunities, and finally their intelligence. They remained largely the slaves of instinct. They followed an attractive and exceedingly promising path, but it led to the bottom of a cliff, not to the summit.

The mollusks, clams, and snails took an easier, downhill road. They formed a shell, and it developed large enough to cover them. It hampered and almost destroyed locomotion and reduced nerve to a minimum. But nerves are nothing but a nuisance anyhow. And why should they move? Food was plenty down in the mud, and if danger threatened, they withdrew into the shell. They stayed down in the mud and let the world go its way. If grievously afflicted by a parasite they produced a pearl-to save themselves from further discomfort. They developed just enough muslittle way; that was all. Digestion and reproduction cle and nervous system to close the shell or drag it a retained the supremacy. They were fruitful and multiplied, and produced hosts of other clams and snails. The present was enough for them and they had that. one who gains the most food, the most entire protecFor if the winner in the struggle for existence is the tion against discomfort, danger from enemies or unreproduction-and these are all good-then the clam favorable surroundings, and the most fruitful and rapid

is the highest product of evolution. It never has been surpassed-I venture to say it never can be-except possibly by the tape-worms. I can never help thinking with what contempt these primitive oysters, if they had had brains enough, would have looked down upon the toiling, struggling, discontented, fighting, aspiring primitive vertebrates. How they would have wondered why God allowed such disagreeable, disturbing, unconventional creatures to exist, and thanked him that he had made the world for them, and heaven too, if there be such a place for mollusks. Their road led to the Slough of Contentment.

But even in molluscan history there was a tragic chapter. The squids and cuttle-fishes regained the swimming life, and in their latest forms gave up the protective shell. But its former presence had so modified their structure that any great advance was impossible. It was too late. The sins of the fathers were visited upon the children in the thousandth generation.

The vertebrate developed an internal skeleton. This was necessarily a slow growth, and the type came late to supremacy. The longitudinal muscles are arranged in heavy bands on each side of the back, and the animal swims rapidly. The sense-organs are keen. The brain contains the ganglia of several or many segments and is highly differentiated. It has a special centre of perception, thought, and will; it is an organ of mind. The vertebrate has the physical and mental advantages of large size.

First the definite form and mode of developing a vertebra is attained. Then the vertebral column is perfected. The fins are modified into legs. The lungs increase in size and the heart becomes double.

« IndietroContinua »