The Design of CMOS Radio-Frequency Integrated CircuitsCambridge University Press, 22 dic 2003 This book, first published in 2004, is an expanded and thoroughly revised edition of Tom Lee's acclaimed guide to the design of gigahertz RF integrated circuits. A new chapter on the principles of wireless systems provides a bridge between system and circuit issues. The chapters on low-noise amplifiers, oscillators and phase noise have been significantly expanded. The chapter on architectures now contains several examples of complete chip designs, including a GPS receiver and a wireless LAN transceiver, that bring together the theoretical and practical elements involved in producing a prototype chip. Every section has been revised and updated with findings in the field and the book is packed with physical insights and design tips, and includes a historical overview that sets the whole field in context. With hundreds of circuit diagrams and homework problems this is an ideal textbook for students taking courses on RF design and a valuable reference for practising engineers. |
Dall'interno del libro
Risultati 1-5 di 49
Pagina 50
... phase -shift keying (QPSK), which we will examine in more detail shortly.26 For now it suffices to comment that this modulation allows doubling the bit rate for a given bandwidth. A third second-generation standard was proposed in 1994 ...
... phase -shift keying (QPSK), which we will examine in more detail shortly.26 For now it suffices to comment that this modulation allows doubling the bit rate for a given bandwidth. A third second-generation standard was proposed in 1994 ...
Pagina 51
... phase modulation called OQPSK, for offset quadrature phase-shift keying). CDMA systems suffer from a unique sensitivity known as the near-far problem. Because other signals appear noiselike, their aggregate noise power can reduce the ...
... phase modulation called OQPSK, for offset quadrature phase-shift keying). CDMA systems suffer from a unique sensitivity known as the near-far problem. Because other signals appear noiselike, their aggregate noise power can reduce the ...
Pagina 64
... phase of the modulated waveform. The vector sum of all three phasors has a magnitude that varies with time; that's amplitude modulation. If the baseband signal is binary, the result is often called amplitude-shift keying (ASK). The ...
... phase of the modulated waveform. The vector sum of all three phasors has a magnitude that varies with time; that's amplitude modulation. If the baseband signal is binary, the result is often called amplitude-shift keying (ASK). The ...
Pagina 67
... phase shifter must provide an accurate phase shift over the bandwidth of interest; otherwise, the output of the shifter will contain a superposition of real and imaginary components. If that weren't enough, we also require that the two ...
... phase shifter must provide an accurate phase shift over the bandwidth of interest; otherwise, the output of the shifter will contain a superposition of real and imaginary components. If that weren't enough, we also require that the two ...
Pagina 72
Hai raggiunto il limite di visualizzazione per questo libro.
Hai raggiunto il limite di visualizzazione per questo libro.
Sommario
1 | |
40 | |
PASSIVE RLC NETWORKS | 87 |
CHARACTERISTICS OF PASSIVE 1C COMPONENTS | 114 |
A REVIEW OF MOS DEVICE PHYSICS | 167 |
DISTRIBUTED SYSTEMS | 202 |
THE SMITH CHART AND SPARAMETERS | 221 |
A Short Note on Units | 227 |
Gain and Phase Margin as Stability Measures | 451 |
RootLocus Techniques | 453 |
Summary of Stability Criteria | 459 |
Errors in Feedback Systems | 462 |
Frequency and TimeDomain Characteristics of First and SecondOrder Systems | 466 |
Useful Rules of Thumb | 469 |
RootLocus Examples and Compensation | 470 |
Summary of RootLocus Techniques | 477 |
Why 50 or 75 W | 229 |
Problem Set | 231 |
BANDWIDTH ESTIMATION TECHNIQUES | 233 |
The Method of OpenCircuit Time Constants | 234 |
The Method of ShortCircuit Time Constants | 254 |
Further Reading | 259 |
Summary | 265 |
Problem Set | 266 |
HIGHFREQUENCY AMPLIFIER DESIGN | 270 |
Zeros as Bandwidth Enhancers | 271 |
The ShuntSeries Amplifier | 282 |
Bandwidth Enhancement with fT Doublers | 288 |
Tuned Amplifiers | 290 |
Neutralization and Unilateralization | 294 |
Cascaded Amplifiers | 297 |
AMPM Conversion | 306 |
Summary | 307 |
Problem Set | 308 |
VOLTAGE REFERENCES AND BIASING | 314 |
Diodes and Bipolar Transistors in CMOS Technology | 316 |
SupplyIndependent Bias Circuits | 317 |
Bandgap Voltage Reference | 318 |
Constantgm Bias | 325 |
Summary | 328 |
NOISE | 334 |
Shot Noise | 342 |
Flicker Noise | 344 |
Popcorn Noise | 347 |
Classical TwoPort Noise Theory | 348 |
Examples of Noise Calculations | 352 |
A Handy Rule of Thumb | 355 |
Typical Noise Performance | 356 |
Noise Models | 357 |
Problem Set | 358 |
LNA DESIGN | 364 |
Derivation of Intrinsic MOSFET TwoPort Noise Parameters | 365 |
Power Match versus Noise Match | 373 |
PowerConstrained Noise Optimization | 380 |
Design Examples | 384 |
Linearity and LargeSignal Performance | 390 |
SpuriousFree Dynamic Range | 397 |
Summary | 399 |
Problem Set | 400 |
MIXERS | 404 |
Mixer Fundamentals | 405 |
Nonlinear Systems as Linear Mixers | 411 |
MultiplierBased Mixers | 416 |
Subsampling Mixers | 433 |
DiodeRing Mixers | 434 |
Problem Set | 437 |
FEEDBACK SYSTEMS | 441 |
A Puzzle | 446 |
Stability of Feedback Systems | 450 |
Compensation through Gain Reduction | 478 |
Lag Compensation | 481 |
Lead Compensation | 484 |
Slow Rolloff Compensation | 486 |
Summary of Compensation | 487 |
Problem Set | 488 |
RF POWER AMPLIFIERS | 493 |
ClassAAB B and C Power Amplifiers | 494 |
Class D Amplifiers | 503 |
Class E Amplifiers | 505 |
Class F Amplifiers | 507 |
Modulation of Power Amplifiers | 512 |
Summary of PA Characteristics | 540 |
RF PA Design Examples | 541 |
Additional Design Considerations | 547 |
Design Summary | 555 |
PHASELOCKED LOOPS | 560 |
Linearized PLL Models | 566 |
Some Noise Properties of PLLs | 571 |
Phase Detectors | 574 |
Sequential Phase Detectors | 579 |
Loop Filters and Charge Pumps | 588 |
PLL Design Examples | 596 |
Summary | 604 |
OSCILLATORS AND SYNTHESIZERS | 610 |
Describing Functions | 611 |
Resonators | 631 |
A Catalog of Tuned Oscillators | 635 |
Negative Resistance Oscillators | 641 |
Frequency Synthesis | 645 |
Summary | 654 |
Problem Set | 655 |
PHASE NOISE | 659 |
General Considerations | 661 |
Phase Noise | 664 |
The Roles of Linearity and Time Variation in Phase Noise | 667 |
Circuit Examples | 678 |
Amplitude Response | 687 |
Summary | 689 |
Problem Set | 690 |
ARCHITECTURES | 694 |
Dynamic Range | 695 |
Subsampling | 713 |
Transmitter Architectures | 714 |
Oscillator Stability | 715 |
Chip Design Examples | 716 |
Summary | 762 |
RF CIRCUITS THROUGH THE AGES | 764 |
The AllAmerican 5Tube Superhet | 768 |
The Regency TR1 Transistor Radio | 771 |
ThreeTransistor Toy CB WalkieTalkie | 773 |
Index 111 | 777 |
Altre edizioni - Visualizza tutto
Parole e frasi comuni
amplifier amplitude approximately assume bandwidth behavior bipolar capacitance capacitor carrier cascade cascoding channel Chapter circuit Class A amplifier closed-loop CMOS coefficient component compute consider coupling crossover delay demodulation density derive device diode drain current effect equal equation example expression factor feedback filter frequency gain gate Hence implementations increases inductance inductor input impedance linear load loop transmission magnitude maximum method mixer modulation MOSFET negative noise figure noise sources nonlinear offset op-amp operation oscillator output parameters parasitic peak phase detector phase error phase margin phase noise phase shift pole problem quadrature radio range ratio reduce resistance resistor resonant result risetime root locus shown in Figure simply spectrum stage substrate supply voltage switch tank temperature term terminal thermal noise tion transconductance transfer function transformer transistor tuned typically vacuum tube voltage width wireless zero