Immagini della pagina
PDF
ePub

against the law of probabilities; if the favorable variation occurs in only a part of the series it remains useless until the corresponding variation has taken place in the other terms. And while the variation is thus awaiting its completion, so to speak, it is useless, and cannot be fostered by natural selection.

Evolution by means of fortuitous variations, combined and controlled only through natural selection, seems to me at least impossible; and this view is, I think, steadily gaining ground.

Natural selection, while a real and very important factor in evolution, cannot be its sole and exclusive explanation. It presupposes other factors, which we as yet but dimly perceive. And this does not impeach the validity of Mr. Darwin's theory any more than Newton's theory of gravitation is impeached by the fact that it offers no explanation as to why the apple falls or how bodies attract one another.

For natural selection explains the survival, but not the origin, of the fittest. Given a species or other group composed of more and less fit individuals and the fittest will survive. How does it come about that there are any more and less fit individuals? This brings us to the consideration of the subject of variation.

Let us begin with a simple case of change in the adult body. The workman grasps his tools day after day, and his hands become horny. The skin has evidently thickened, somewhat as on the soles of the feet. This is no mere mechanical result of pressure alone. Continuous pressure would produce the opposite result. But under the stimulus of intermittent pressure the capillaries, or smallest blood vessels, furnish

more nutriment to the cells composing the lowest layer of the outer skin or epidermis. These cells, being better nourished, reproduce by division more rapidly, and the epidermis, becoming composed of a greater number of layers of cells, thickens. The outermost layers, being farthest from the blood supply, dry up and are packed together into a horny mass.

If I go out into the sunshine I become tanned. This again is not a direct and purely chemical or physical result of the sun's rays, but these have stimulated the cells of the skin to undergo certain modifications. Any change in the living body under changed conditions is not passive, but an active reaction to a stimulus furnished by the surroundings. The same stimulus may excite very different reactions in different individuals or species.

Early in this century a farmer, Seth Wright, found among his lambs a young ram with short legs and long body. The farmer kept the ram, reasoning that his short legs would prevent him from leading the flock over the farm-walls and fences. From this ram was descended the breed of ancon, or otter, sheep. Now the stimulus which had excited this variation must have been applied early in embryonic life, or perhaps during the formation or maturing of the germcells themselves. Such a variation we call a congenital variation.

These cases are merely illustrations of the general truth that in every variation there are two factors concerned the living being with its constitution and inherent tendencies and the external stimulus.

The courses of the different balls in a charge of grape-shot, hurled from a cannon, are evidently due

to two sets of forces-1, their initial energy and the direction of their aim; 2, the deflecting power of resisting objects or forces-or the different balls might roll with great velocity down a precipitous mountainside. In the first case velocity and direction of course would be determined largely by initial impulse; in the second, by the attraction of the earth and by the inequalities of its surface.

In evolution, environment, roughly speaking, corresponds to these deflecting or attracting external objects or forces; inherent tendencies to initial impulse. If we lay great weight on initial tendencies, inherent in protoplasm from the very beginning, we shall probably lay less stress on natural selection as a guiding, directing process.

The great botanist, Nägeli, has propounded a most ingenious and elaborate theory of evolution, as dependent mainly on inherent initial tendency. We can notice only one or two of its salient points. All development is, according to his view, due to a tendency in the primitive living substance toward more complete division of labor and greater complexity. This tendency, which he calls progression, or the tendency toward perfection, is the result of the chemical and molecular structure of the formative controlling protoplasm (idioplasm) of the body, and is transmitted with other parental traits from generation to generation. And structural complexity thus increases like money at compound interest. Development is a process of unfolding or of realization of the possibilities of this tendency under the stimulus of surrounding influences. Environment plays an essential part in his system. But only such changes are transmissible to

future generations as have resulted from modifications arising in the idioplasm. Descendants of plants which have varied under changed conditions revert, as a rule, to the old type, when returned to the old surroundings. And in the animal world effects of use and disuse are, according to his view, not transmissible.

Natural selection plays a very subordinate part. It is purely destructive. Given an infinity of place and nourishment-do away, that is, with all struggle and selection—and the living world would have advanced, purely by the force of the progressive tendency, just as far as it now has; only there would have survived. an indefinite number of intermediate forms. It would have differed from our present living world as the milky way does from the starry firmament.

He compares the plant kingdom to a great, luxurious tree, branching from its very base, whose twigs would represent the present stage of our different species. Left to itself it would put out a chaos of innumerable branches. Natural selection, like a gardener, prunes the tree into shape. Childen might imagine that the gardener caused the growth; but the tree would have been broader and have branched more luxuriantly if left to itself.*

Now this

Every species must vary perpetually. proposition is apparently not in accord with fact; for some have remained unchanged during immense periods. And natural selection, by removing the less fit, certainly appears to contribute to progress by raising the average of the species. The theory seems extreme and one-sided. And yet it has done great service by *See Nägeli, "Theorie der Abstammungslehre," p. 18; also pp. 12, 118,

285.

calling in question the all-sufficiency of natural selection and the modifying power of environment, and by emphasizing, probably overmuch, the importance of initial inherent tendency, whose value has been entirely neglected by many evolutionists.

Lack of space compels us to leave unnoticed most of the exceedingly valuable suggestions of Nägeli's brilliant work.

It is still less possible to do any justice in a few words to Weismann's theory. Into its various modifications, as it has grown from year to year, we have no time to enter. And we must confine ourselves to his views of variation and heredity.

In studying protozoa we noticed that they reproduced by fission, each adult individual dividing into two young ones. There is therefore no old parent left to die. Natural death does not occur here, only death by violence or unfavorable conditions. The protozoa are immortal, not in the sense of the endless persistence of the individual, but of the absence of death. Heredity is here easily comprehensible, for one-half, or less frequently a smaller fraction, of the substance of the parent goes to form the new individual. There is direct continuity of substance from generation to gen

eration.

But in volvox a change has taken place. The fertilized egg-cell, formed by the union of egg and spermatozoon, is a single cell, like the individual resulting from the conjugation or fusion of two protozoa. But in the many-celled individual, which develops out of the fertilized egg, there are two kinds of cells. 1. There are other egg-cells, like the first, each one of which can, under favorable conditions, develop into a

« IndietroContinua »