Immagini della pagina
PDF
ePub

sense-organs have arisen from the ectoderm. But our mid-intestine is still the greatly elongated archenteron of the gastrula.

We may therefore compare the hydra or gastrula to a little portion of the lining of the human mid-intestine covered with a little flake of epidermis. This much the hydra has attained. But our bones and muscles and blood-vessels all come from the mesoderm by folding, plaiting, and channelling, and division of labor resulting in differentiation of structure. Of all true mesodermal structures the hydra has actually none, but in the ectodermal and entodermal cells he has the potentiality of them all. We must now try to discover how these potentialities became actualities in higher forms.

The third stage in our ancestral series is the turbellarian. This is a little, flat, oval worm, varying greatly in size in different species, and found both in fresh and salt water. Some would deny that this worm belonged in our series at all. But, while doubtless considerably modified, it has still retained many characteristics almost certainly possessed by our primitive bilateral ancestor. The different parts of hydra were arranged like those of most flowers, around one main vertical axis; it was thus radiate in structure, having neither front nor rear, right nor left side. But our little turbellaria, while still without a head, has one end which goes first and can be called the front end. The upper or dorsal surface is usually more colored with pigment cells than the lower or ventral surface, on which is the mouth. It has also a right and left side. It is thus bilateral.

The gastrea swam by cilia, little eyelash - like

processes which urge the animal forward like a myriad of microscopic oars. In our bodies they are sometimes used to keep up a current, e.g., to remove foreign particles from the lungs. The turbellaria is still covered with cilia, probably an inheritance from the gastræa; for, while in smaller forms they may still be the principal means of locomotion, in larger ones the muscles are beginning to assume this function and the animal moves by writhing. The bilateral symmetry has arisen in connection with this mode of locomotion and is thus a mark of important progress.

In the turbellaria we find for the first time a true body-wall distinct from underlying organs. The outer layer of this is a ciliated epithelium or layer of cells. Under this an elastic membrane may occur. Then come true body muscles, running transversely, longitudinally and dorso-ventrally. Between the external transverse and the internal longitudinal layers we often find two muscular layers whose fibres run diagonally. The body is well provided with muscles, but their arrangement is still far from economical or effective.

Within the body-wall is the parenchym. This is a spongy mass of connectile tissue in which the other organs are embedded. The mouth lies in the middle, or near the front of the ventral surface. The intestine varies in form, but is provided with its own layers of longitudinal and transverse muscles, and usually has paired pouches extending out from it into the body parenchym. These seem to distribute the dissolved nutriment; hence the whole cavity is still often called a gastro-vascular cavity as serving both digestion and circulation. There is no anal opening, but indigestible material is still cast out through the mouth.

The animal can gain sufficient oxygen to supply its muscles and nerves, which are the principal seats of combustion, through the external surface. It has,

5. TURBELLARIAN. LANG.

[ocr errors]

therefore, no special respir

atory organs. But the waste matter of the muscles cannot escape so easily, for these are becoming deeper seated. Hence we find an excretory system consisting of two tubes with many branches in the parenchym, and discharging at the rear end of the body. This again is a sign that the muscles are ph becoming more important, pt for the excretory system is needed mainly to remove their waste. These tubes may be only greatly enlarged glands of the skin.

[graphic]
[blocks in formation]

The nervous system consists of a plexus of fibres and cells, the cells originating impulses and the fibres conveying them. But this much was present in hydra also. Here the front end of the body goes foremost and is continually coming in

contact with new conditions. food and danger must be kept. constant exercise, or selection,

Here the lookout for Hence, as a result of or both, the nerve

[ocr errors]

plexus has thickened at this point into a little compact mass of cells and fibres called a ganglion. And because this ganglion throughout higher forms usually lies over the oesophagus, it is called the supra-oesophageal ganglion. This is the first faint and dim prophecy of a brain, and it sends its nerves to the front end of the body. But there run from it to the rear end of the body four to eight nerve-cords, consisting of bundles of nerve-threads like our nerves, but overlaid with a coating of ganglion cells capable of originating impulses. These cords are, therefore, like the plexus from which they have condensed, both nerves and centres; differentiation has not gone so far as at the front of the body. Sense organs are still very rudimentary. Special cells

of the skin have been modified into neuro - epithelial cells, having sensory hairs protruding from them and nerve - fibrils running from their bases.

In a very few turbellaria we find otolith vesicles.

[graphic]

6. CROSS-SECTION OF TURBELLARIAN.
HATSCHEK, FROM JIJIMA.

e, external skin; rm, lateral muscles
la and li, longitudinal muscles;
mdv, dorso-ventral muscles; pa,
parenchyma; h, testicle; ov, ovi-
duct; dt, yolk-gland; n, ventral.
nerve;, gastro-vascular cavity.

These are little sacks in the skin, lined with neuroepithelial cells and having in the middle a little concretion of carbonate of lime hung on rather a stiffer hair, like a clapper in a bell. Such organs serve in higher animals as organs of hearing, for the sensory hairs are set in vibration by the sound-waves. It is quite as probable that they here serve as organs for feeling the slightest vibrations in the surrounding water, and thus giving warning of approaching food or danger. The animal has also eyes, and these may be very numerous. They are not able to form images of external objects, but only of perceiving light and the direction of its source. A little group of these eyes lies directly over the brain, near the front end of the body; the others are distributed around the front or nearly the whole margin of the body.

The turbellaria, doubtless, have the sense of smell, although we can discover no special olfactory organ. This sense would seem to be as old as protoplasm itself.

This distribution of the eyes around a large portion of the margin, and certain other characteristics of the adult structure and of the embryonic development, are very interesting, as giving hints of the development of the turbellaria from some radiate ancestor. The mouth is in a most unfavorable position, in or near the middle of the body, rarely at the front end, as the animal has to swim over its food before it can grasp it. The animal only slowly rids itself of old disadvantageous form and structure and adapts itself completely to a higher mode of life.

By far the most highly developed system in the body is the reproductive. It is doubtful whether any animal, except, perhaps, the mollusk, has as compli

« IndietroContinua »